SU-E-T-123: Understanding the Meaning of IMRT QA Passing Rates with a 2D Diode Array.
نویسندگان
چکیده
PURPOSE A lower than ideal tolerance limit is used in intensity-modulated radiation therapy quality assurance (IMRT QA) with a 2D diode array due to passing rate fluctuations. The objective is to identify patterns in the passing rates to predict sources of uncertainty that can affect treatment delivery, for example, the need to re-calibrate the multileaf collimator when the passing rates start to decrease. METHODS Five complex clinical prostate IMRT plans were evaluated with a 2D diode array. The QA for each plan was repeated five times during one and a half month period. One of the plans was randomly selected and repeated the same day five consecutive times. The planar doses calculated by the treatment planning system were compared to the measurements of the 2D diode array. The individual passing rates per beam per plan were compared. RESULTS The average passing rate for each plan ranged from 94% to 97%. While the average percent difference of this ranged between -7.67% to 17.61%. Additionally, the minimum and maximum standard deviation among all beams was 0.13% and 9.63% respectively. We also compared the standard deviation of a plan QA repeated during different days versus a plan QA repeated during the same day. For the former the highest standard deviation was 6.05 % while for the later 0.21%. We noticed that the largest discrepancy between the passing rates was for angles at around 155° and 205°. CONCLUSION These results show some inconsistency in the IMRT QA passing rates from one day to the next. Moreover, lower passing rates for a specific angle like the ones shown here can represent possible mechanical or tuning problems with the linear accelerator at these specific locations. Early identification of these sources of uncertainty can greatly improve the precision of the treatment delivery.
منابع مشابه
Evaluation of a fast method of EPID-based dosimetry for IMRT and Comparison with 3D EPID-based dosimetry system using conventional two- and three-dimensional detectors for VMAT
Introduction: Electronic portal imaging devices (EPIDs) could potentially be useful for intensity-modulated radiation therapy (IMRT) and VMAT QA. The data density, high resolution, large active area, and efficiency of the MV EPID make it an attractive option. However, EPIDs were designed as imaging devices, not dosimeters, and as a result they do not inherently measure dose in ...
متن کاملIMRT QA using machine learning: A multi‐institutional validation
PURPOSE To validate a machine learning approach to Virtual intensity-modulated radiation therapy (IMRT) quality assurance (QA) for accurately predicting gamma passing rates using different measurement approaches at different institutions. METHODS A Virtual IMRT QA framework was previously developed using a machine learning algorithm based on 498 IMRT plans, in which QA measurements were perfo...
متن کامل3D Analysis of Intensity-Modulated Radiation Therapy Quality Assurance Measurement using a 2D Diode Array
Intensity-modulated radiation therapy (IMRT) quality assurance (QA) is often performed using a 2D device and compares measured and computed fluence maps to determine if a field passes or fails certain dose and position criteria. The effects of a measured deviation to the 3D patient spatial dosimetry and dose volume histogram (DVH) are largely unknown because they cannot be analyzed using commer...
متن کاملA critical evaluation of the PTW 2D‐ARRAY seven29 and OCTAVIUS II phantom for IMRT and VMAT verification
Quality assurance (QA) for intensity- and volumetric-modulated radiotherapy (IMRT and VMAT) has evolved substantially. In recent years, various commercial 2D and 3D ionization chamber or diode detector arrays have become available, allowing for absolute verification with near real time results, allowing for streamlined QA. However, detector arrays are limited by their resolution, giving rise to...
متن کاملOn the sensitivity of patient‐specific IMRT QA to MLC positioning errors
Accurate multileaf collimator (MLC) leaf positioning plays an essential role in the effective implementation of intensity modulated radiation therapy (IMRT). This work evaluates the sensitivity of current patient-specific IMRT quality assurance (QA) procedures to minor MLC leaf positioning errors. Random errors of up to 2 mm and systematic errors of +/-1 mm and +/-2 mm in MLC leaf positions wer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical physics
دوره 39 6Part11 شماره
صفحات -
تاریخ انتشار 2012